Science
27.02.2012

Mit Laserstrahlen Sprengstoff finden

Eine Entwicklung der TU Wien weist Chemikalien auf große Distanz nach und zwar selbst dann, wenn sie im Inneren von Behältern verborgen sind. Diese Methode Der Raman-Spektroskopie ermöglicht es, Chemikalien auf eine Entfernung von über hundert Metern genau zu untersuchen. Damit könnte man künftig Sicherheitskontrollen auf Flughäfen einfacher machen.

Von explosiven Substanzen hält man gern etwas Abstand, doch um sie aufzuspüren und chemisch nachzuweisen ließ sich ein recht enger Kontakt bisher nicht vermeiden. An der TU Wien wurde nun eine Methode entwickelt, Chemikalien auch in geschlossenenen Gefäßen auf eine Entfernung von über hundert Metern zu untersuchen. Das Licht eines Laserstrahls wird von verschiedenen Substanzen auf charakteristische Weise gestreut, dadurch lässt sich sogar der Inhalt eines Containers chemisch analysieren ohne ihn zu öffnen.

„Die Methode, die wir verwenden, ist die Raman-Spektroskopie“, sagt Professor Bernhard Lendl vom Institut für Chemische Technologien und Analytik der TU Wien. Doch wie funktioniert das? Man beleuchtet die Probe, die analysiert werden soll, mit einem Laserstrahl. Wird das Licht an den Molekülen der Probe gestreut, kann es seine Energie ändern. Beispielsweise können einzelne Photonen des Laserlichts Schwingungen in den Molekülen der Probe anregen und dadurch Energie abgeben. Damit ändert sich die Wellenlänge des Lichts und somit seine Farbe. Aus der genauen Farb-Zusammensetzung des gestreuten Lichts lässt sich daher ablesen, an welcher chemischen Substanz es gestreut wurde.

Gestreute Lichtteilchen verteilen sich
„Bisher musste man bei dieser Art der Raman-Spektroskopie den Laser und den Licht-Detektor in unmittelbarer räumlicher Nähe zur Probe aufstellen“, erklärt Bernhard Zachhuber. Durch seine Weiterentwicklungen sind die Messungen nun aber auch auf große Distanzen möglich. „Von hundert Millionen Photonen regen nur einige wenige überhaupt einen Raman-Streuprozess in der Probe an“, sagt Zachhuber. Diese gestreuten Lichtteilchen wiederum verteilen sich gleichmäßig in alle Richtungen. Nur ein winziger Bruchteil gelangt von der Probe zum Licht-Detektor. Aus diesem schwachen Signal muss möglichst viel Information herausgelesen werden. Das gelingt mit Hilfe eines leistungsfähigen Teleskops und hochempfindlichen Licht-Sensoren.

Kooperation mit österreichischem Bundesheer
Die Forschungsgruppe an der TU Wien kooperierte bei diesem EU-Projekt mit der Industrie und mit potenziellen Anwendern aus dem Bereich der öffentlichen Sicherheit. So zeigte sich die spanische „Guardia Civil“ interessiert. Im Zuge der Arbeiten konnte auch das österreichische Bundesheer in die Forschungsarbeiten in Wien eingebunden werden. Auf einem Gelände des Bundesheeres konnte das Team der TU Wien ausprobieren, auf welche Distanzen sich Chemikalien auf diese Weise identifizieren lassen. Unter den getesteten Proben waren häufig verwendete Sprengstoffe wie TNT, ANFO oder Hexogen. Die Versuche verliefen äußert vielversprechend: „Selbst bei einem Abstand von über hundert Metern lassen sich die Substanzen noch zuverlässig nachweisen“, berichtet Engelene Chrysostom von der TU Wien.

Funktioniert auch in Containern
Die Raman-Spektroskopie auf großen Distanzen funktioniert sogar, wenn die untersuchte Probe in einem undurchsichtigen Container versteckt ist. Der Laserstrahl wird zwar am Container gestreut, dringt aber teilweise auch ins Innere ein. Im Probematerial kommt es also immer noch zu Raman-Streuprozessen. „Die Schwierigkeit liegt darin, das Lichtsignal des Behälters vom Lichtsignal der Probe im Inneren zu unterscheiden“, sagt Lendl.

Das gelingt mit einem einfachen geometrischen Trick: Der Laserstrahl trifft auf einem kleinen, fokussierten Punkt am Container auf, verbreitert sich dann im Inneren aber stark. Das Lichtsignal, das vom Behälter kommt, geht also von einem geometrisch eng begrenzten Bereich aus, das schwache Lichtsignal des Inhalts wird von einem größeren Bereich ausgesandt. Richtet man also das Mess-Teleskop also nicht genau auf die Laser-Auftreffstelle, sondern ein Stück davon weg, misst man das charakteristische Lichtsignal des Inhalts und nicht das der Verpackung.

Für Sicherheitskontrollen
Die neue Methode könnte Sicherheitskontrollen auf Flughäfen einfacher machen, doch das mögliche Anwendungsgebiet ist noch viel größer. Raman-Spektroskopie auf große Distanzen ist überall dort interessant, wo es schwierig ist, ganz nah an das Untersuchungsobjekt heranzukommen. Für die Untersuchung von Eisbergen kann das genauso nützlich sein wie für Gesteinsuntersuchungen bei Mars-Missionen. Auch in der chemischen Industrie gibt es für solche Methoden ein breites Einsatzgebiet. Die Anmeldung zum Patent durch die TU Wien ist bereits erfolgt.