© Screenshot

Science

Im Boden gespeichertes CO2 strömt wie in einer Lavalampe

Wenn die Menschheit ihren CO2-Ausstoß nicht in den Griff bekommt, ist eine vieldiskutierte Klimaschutz-Maßnahme die Abscheidung und Speicherung von CO2 in Böden (Carbon Capture and Storage, CCS).

Wiener Forscher*innen haben nun gemeinsam mit italienischen Kollegen*innen untersucht, wie sich in Grundwasser gelöstes Kohlendioxid in porösem Gestein verhält. Durch Dichteunterschiede entstehen Konvektionsströme, ähnlich wie in einer Lava-Lampe, berichten sie im "Journal of Fluid Dynamics".

Für die CCS-Technik reicht es nicht aus, CO2 einfach in den Boden zu pumpen. Das Kohlendioxid muss sich dort auch dauerhaft mit anderen Substanzen verbinden, damit es nicht wieder in die Atmosphäre entweicht.

In der Computersimulation lassen sich die unterschiedlichen Größenskalen der Konvektionsprozesse sich erkennen, heißt es von der TU Wien.

Konvektionsströme wie in einer Lavalampe

Relativ lange dauert es, bis es sich mit bestimmten Metalloxiden zu festem Karbonat-Gestein verbindet. Rascher würde es sich im Grundwasser lösen, wo es dann dauerhaft in großer Tiefe gespeichert bleibt. Diesen Mechanismus hat sich nun ein österreichisch-italienisches Forscher*innenteam genauer angesehen.

Mittels aufwändiger Computersimulationen zeigten sie, dass es durch Dichteunterschiede zu Konvektionsströmen ähnlich wie in einer Lavalampe kommt. "Mit Supercomputern gelang es uns nun, diese Konvektionsphänomene zu verstehen und die entscheidenden physikalischen Parameter zu ermitteln, mit denen man diese Effekte in unterschiedlichen geologischen Strukturen beschreiben kann", erklärte Marco De Paoli vom Institut für Wärmeübertragung und Strömungsmechanik der Technischen Universität (TU) Wien in einer Aussendung.

Wie auf der Sonnenoberfläche

Wenn sich in einem typischen Gesteinsreservoir mit Poren mit Durchmessern von rund 50 bis 400 Mikrometern Grundwasser und Kohlendioxid mischen, bilden sich rund 50 Zentimeter große Zellen unterschiedlich hoher CO2-Konzentration. Diese kleinen Zellen können sich zu "Superzellen" mit einem Durchmesser von drei bis zehn Metern verbinden. Insgesamt entsteht so ein Bild, das an das Muster der Plasma-Konvektionsströme auf der Sonnenoberfläche erinnert.

"Die Erkenntnisse, die wir mit unseren Computersimulationen gewonnen haben, lassen sich auf unterschiedliche Arten von Gestein anwenden", erklärte De Paoli. Die Erkenntnisse könnten dabei helfen, die optimalen Gesteinsformationen zum Speichern von Kohlendioxid zu identifizieren.

Hat dir der Artikel gefallen? Jetzt teilen!

Kommentare